Novel advances in MDR treatment.

“TO WIN, STOP FIGHTING”

By:

Dr. Boris Farber
Dr. Ilya Kleyn
Introduction

NOIGEL LLC is a New York based company that was established in 2010.

Our mission is to find new innovative ways to treat MDR infections.

Amongst the company’s expertise is utilizing synergistic combinations of FDA approved generic drugs and developing pharmaceutical compositions with new and unique applications.

NOIGEL scientists have published extensive research studies supporting development of their pharmaceutical compositions.
CDC Statistics: Dangers of MDR

Multidrug-Resistant Pseudomonas Aeruginosa
- Threat Level: Serious
- 6,700 cases in 2019
- 440 cases in 2020
- 51,000 cases per year

Multidrug-Resistant Acinetobacter
- Threat Level: Serious
- 7,300 cases in 2019
- 500 cases in 2020
- 12,000 cases per year

Vancomycin-Resistant Enterococcus (VRE)
- Threat Level: Serious
- 20,000 cases in 2019
- 1,300 cases in 2020
- 66,000 cases per year

Drug-Resistant Neisseria Gonorrhoeae
- Threat Level: Urgent
- 246,000 cases in 2019
- 3,280 cases in 2020
- 820,000 cases per year

Extended Spectrum β-Lactamase (ESBL) Producing Enterobacteriaceae
- Threat Level: Serious
- 26,000 cases in 2019
- 1,700 cases in 2020
- 140,000 cases per year
- $40,000 in excess medical costs per year

Carbapenem-Resistant Klebsiella
- 7,900 cases per year
- 1,400 cases per year
- 600 deaths

Carbapenem-Resistant E. Coli
- CRE have become resistant to all or nearly all available antibiotics

This slide provides statistics on the dangers of multidrug-resistant organisms, highlighting the increasing numbers and the threat they pose to public health.
Current strategies within scientific community

- Antimicrobial peptides
- Engineered bacteriophages
- Immune stimulation
- Probiotics
- Vaccines
- Antibiofilm peptides
- Lysins (lysozyme's derivatives)
- Antibiotic potentiators
- Antibiotic adjuvants toxicity inhibitors
- Antibodies (anti-pili-Ig)

ONGOING RESEARCH DISCOVERIES IN MANY AREAS
12 New antibiotics FDA approved in last 5 years *

Annual Increase in global anti-MDR bacteria antibiotic market*

Amount anti-bacterial market will reach by 2022**

US/EU regulatory authorities made Millions in funding available (e.g. CARB-X)

* https://www.fda.gov/NewsEvents/Newsroom/FDAInBrief/ucm595264.htm
** https://www.researchandmarkets.com/research/5x7jmj/global
NOIGEL pioneers use of TRIZ

• TRIZ was developed by Genrich Altshuller and his colleagues in the former Soviet Union in 1946.

• **TRIZ** (theory of inventive problem solving, modern design and technologies in different fields).

• Some core principles of TRIZ:
 • Problems and solutions are repeated across industries and sciences.
 • Patterns of technical evolution tend to be repeated across industries and sciences.
 • Creative innovations often use scientific effects outside the field where they were developed.

1. https://www.forbes.com/sites/haydnshaughnessy/2013/03/07/why-is-samsung-such-an-innovative-company/2/#7c5759a87f96
NOIGEL pioneers use of TRIZ

TRIZ principles have been used in many industries including companies like Samsung\(^1\), General Motors, NASA.

NOIGEL LLC is pioneering the use of TRIZ in the pharmaceutical industry.

\(^1\)https://www.forbes.com/sites/haydnshaughnessy/2013/03/07/why-is-samsung-such-an-innovative-company/2/#7c5759a87f96
Much research is focused on fighting bacteria as they develop (chasing it).

Through TRIZ, NOIGEL has developed a novel strategy to fight MDR.
NOIGEL Breakthrough

• NOIGEL Hypothesis:
 If during treatment of infectious diseases we could eliminate the death of microorganisms, we could eliminate development of bacterial resistant strains.

If we could stop bacterial toxin and virulence factors production, we could:

• Make these bacteria less harmful.
• Make the bacteria sensitive to current and future antibiotics.
• Eliminate and decrease the resistant strains selection process.
NOIGEL has developed a novel patent pending pharmaceutical composition of FDA approved generic drugs which will eliminate the death of microorganisms.

NOIGEL refers to this composition as Bacterial Growth Enhancer (BGE30).

- **Instead of killing bacteria**, this composition initiates bacterial growth, resulting in reduced bacterial defense and virulent aggression.
- This will prevent the selection of new dangerous multi-resistant bacterial strains.
- As result of **synergistic combination** of each active components of BGE30 composition will significantly diminish the concentration between 0,001% and 0,0001%.
Finding the right target:

• NOIGEL identified most suitable candidates as **Bacterial growth enhancer (BGE30)**.
• 550 substances were selected from 38,000 FDA generic drugs.
• NOIGEL selected three substances best suitable as a bacterial growth enhancer (BGE30).

Properties of BGE30:

• BGE is comprised of FDA approved drugs from the *(isoquinoline, imidazole and pyrimidine derivatives)*.
• Decreased bacterial virulence factors and toxins production since BGE create comfort for bacterial growth.
• BGE has minimal spectrum of side effects to host body and doesn’t affect Antibiotics activity.
Logarithmic growth—bacteria in the absence of competition with each other "dump" the majority of virulence factors and toxin formation (including factors of acquired antibiotic resistance)

Log phase – The most perspective phase as a target by antimicrobials.

Effects in vitro Bacterial growth enhancers (BGE30) on Acinetobacter Baumannii

MDR A. baumannii growth **without** (BGE30): 6 day growth, 2nd passage

MDR A. baumannii growth **with** (BGE30) agents: 6 day growth, 2nd passage
Effect in vitro with (BGE) on Acinetobacter Baumannii

MDR A.baumannii growth with (BGE30): 9 day growth, 3rd passage.

MDR A.baumannii growth with (BGE30): 12 day growth, 4th passage.
Bacterial growth enhancers (BGE30) MDR Pseudomonas Aeruginosa

P. Aeruginosa IMI2 (MDR strain) **without** Bacterial growth enhancers (BGE30) 3 day growth, 1st passage

P. Aeruginosa in vitro **with** Bacterial growth enhancers (BGE30) 3 day growth, 1st passage

D < 5 mm Polymyxin
D < 5 mm Amicacin

d > 25 mm Polymyxin
d > 10 mm Amicacin
P. aeruginosa zones of growth retardation (mm) Polymyxin (colistin) in the classic media without (BGE30).

Notes: n=6 for each studies, P<0.05. Stat.hypothesis (dispersion analysis) it is differences between P. aeruginosa sensitivity to polymyxin at classic medium without BGE30.
P. aeruginosa zones of growth retardation (mm) Polymyxin (colistin) in the classic media with (BGE30).

Notes: n=6 for each studies, P<0,05. Stat. hypothesis (dispersion analysis) it is presence differences between P. aeruginosa sensitivity to polymyxin at medium with BGE30 along some passages.
Snapshot of NOIGEL activity

• Successful results in vivo studies:
 • **Microorganisms of target:** Pseudomonas aeruginosa, Proteus vulgaris, Acinetobacter baumannii, Klebsiella pneumonia.
 • **Antimicrobials:** polymyxin, amikacin, fluoroquinolone groups synergistic with Bacterial growth enhancers (BGE30).

• Planned research projects:
 • **Microorganisms of target:** Staphylococcus, Candida albicans, Enterococcus, Enterobacteriaceae, Escherichia coli, Mycobacterium tuberculosis.
 • **Antimicrobials:** Peniciline, Cephalosporins, Macrolide, Aminoglycoside Tetracycline groups.
Options for further development of NOIGEL research project

1. Pharmaceutical companies currently holding generic antibiotics in their portfolio, could use NOIGEL’s approach to recover bacterial sensitivity to them and boost sales exponentially.

2. Pharmaceutical companies currently holding generic drugs of bacterial growth enhancers (BGE30) will boost their sales due to new application use.

3. Life Sciences private equity groups and venture capital firms could partner with NOIGEL to help create a new company that can manufacture and sell novel method of bacterial growth enhancers (BGE30). Additionally, different collaborations may apply.
Publications and IP

IP:

1. New combinatorial derivatives of antibiotics based on supramolecular structures
 PCT/RU2017/000424

2. Method of accelerating the growth of bacterial biomass and suppression of bacterial virulence
 PCT/RU2011/001060; WO 2013/100792; EA Patent 025623

Publications:

1. Influence Of Non-Metabolic Microbial Growth Promotors (AMP Activators) On The Sensitivity To Antimicrobials
 In The Actually Multiresistant Microbial Strains Artur Martynov, Tatyana Osolodchenko, Boris Farber, Sophya Farber
 bioRxiv 143438; doi: https://doi.org/10.1101/143438

 (2008). Effect of the combined action of chemical origin stimulants on the growth rate of the microbial mass of

3. The novel strategy to fight multidrug resistance by multiple drugs synergism, based on docking in drug design
 and TRIZ/ SMi’s Superbugs & Superdrugs, New Jersey, USA. 14-16 NOV 2016/ Farber B., Kleyn I., Martynov A.

4. The novel strategy to fight multidrug resistance by multiple drugs synergism, based on docking in drug design
 AND TRIZ. Change of paradigm/ Synopsis investors conference, New-York, 15 DEC, 2016/Ph.D., Sc.D. Boris Farber,
 Dr.Ilya Kleyn, Dr.Artur Martynov, Tatyana Osolodchenko, Ph.D., Dr. Tatyana Kabluchko, Yury Lisnyak, Ph.D.,
 Tatyana Bomko, Ph.D.,Tatyana Nosalskaya, Ph.D., Helen Romanova, Ph.D., Helen Grishina, Ph.D.